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In the vicinity of a caustic of a dispersive wave system, where the group velocity is 
stationary and hence dispersive effects are relatively weak, the nonlinear Schrodinger 
equation (NLS) breaks down, and the propagation of the envelope of a finite- 
amplitude wavepacket is governed by a modified nonlinear Schrodinger equation 
(MNLS). On the basis of the MNLS, a search for wave envelopes of permanent form 
is made near a caustic. It is shown that possible solitary wave envelopes satisfy a 
nonlinear eigenvalue problem. Numerical evidence is presented of symmetric, 
double-hump solitary-wave solutions. Also, a variety of periodic envelopes are 
computed. These findings are discussed in connection with previous analytical and 
numerical work. 

1. Introduction 
Various dispersive wave systems have linear dispersion relations with inflection 

points at certain wavenumbers. Examples include gravity-capillary water waves 
(Whitham 1974, $ 12.1), internal ocean waves (Eckart 1961), and deep-water gravity 
waves a t  the cusp lines of a ship (Lighthill 1978, $3.10). At an inflection point of a 
linear dispersion relation, the group velocity attains a local extremum. In the 
context of linear wave propagation, the physical significance of this extremum is well 
known : for fully dispersed waves in the far field, the dominant disturbance is found 
along the corresponding group line which forms a caustic - a boundary where a 
transition from oscillatory to exponentially decaying wave behaviour takes place 
(Lighthill 1978, $4.11). The fact that waves are most pronounced near a caustic 
according to linear theory provides motivation for exploring the potential 
significance of finite-amplitude effects. In particular, the possibility of wavepackets 
with envelopes of permanent form, held together through the combined action of 
dispersion and nonlinearity, is quite attractive from a physical viewpoint ; for 
example, such nonlinear packets could play an important part in the ocean, in the 
presence of a double thermocline, where caustics are quite common and are 
associated with the occurrence of Eckart resonances (Eckart 1961). Also, recent field 
observations (Brown et al. 1989) suggest that solitary wavepackets can be found 
within the wave pattern generated by a ship, and it is of interest to know whether 
similar phenomena are likely to occur close to the cusp lines. 

In general, the propagation of the envelope of a weakly nonlinear wavepacket is 
governed by the familiar nonlinear Schrodinger equation (NLS) which, under certain 
conditions, has solitary- and periodic-wave solutions (see, for example, Whitham 
1974,s 17.7,17.8).  However, the NLS breaks down in the vicinity of a caustic because 
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the dispersion relation is locally flat so that the dispersive term of the NLS vanishes. 
To achieve a balance between weak dispersive and nonlinear effects, a higher-order 
dispersive term needs to be included and, thus, a modified nonlinear Schrodinger 
equation (MNLS) arises. 

To be more specific, consider a wave system with linear dispersion relation w = 
w ( k ) .  Following Whitham (1974, 0 17.7), expanding w(k)  in a Taylor series about the 
carrier wavenumber k = k, and carrier frequency w = wo gives 

w-(0,  = W;(k-k,)+&o;;( lc-k,)2+&4(k-k,)3+ ... . 

w, = w(k,) + € ~ I A I ~ +  0 ( € 4 ) ,  

(1) 

Combining (1) with a finite-amplitude dispersion relation of the form 

E -4 1 being a measure of wave steepness, a nonlinear evolution equation for the wave 
envelope A ( X ,  T )  is obtained : 

€2 

P 
A,+w~Ax-~ ipw~Ax, -&zw; ; ’Axxx+i -A2A*  = O(p3,e2, e4/p), (2) 

where X = pu“, T = pt (p Q 1) are the ‘slow’ envelope variables, and * denotes 
complex conjugate. In general, wg = O(1) so that the leading-order dispersive term in 
(2) is O(p) and balance with the nonlinear term is achieved if p = O ( E ) ;  in such a case 
the O(p2) term in (2) is of higher order and (2) reduces to the NLS. On the other hand, 
in the neighbourhood of a caustic, wg = O(p); both dispersive terms in ( 2 )  are O(p2) 
and balance with the nonlinear term if p = €5. Then, in a frame of reference moving 
with the group velocity w i ,  

X = X - w i T ,  T’ = dT, 

equation (2) reduces to the MNLS: 

A ,  +$A,, + yAxxx  + iA2A* = 0, 

where primes have been dropped and 

(3) 

Note that (3) is uniformly valid through a caustic : exactly at a caustic wg vanishes 
so that p = 0, y = 0(1), allowing a balance of nonlinear with dispersive effects; while 
far from a caustic IwJ 9 O(p) so that IpI 9 O( 1) and the NLS is recovered in this limit. 

A formal derivation of the MNLS (3) was carried out by Jang & Benney (1981) in 
the context of stratified shear flows, and by Akylas (1987) who examined finite- 
amplitude effects near the cusp lines of the Kelvin ship-wave pattern. Jang & Benney 
(1981) attempted to find solitary-wave solutions of (3) ; to simplify their analysis, 
they used a transformation which, however, ab initio excluded the possibility of 
solitary waves with more than one hump. They presented perturbation expansions 
suggesting that single-hump solitary waves exist close to a certain limit which, as will 
be shown later (see Appendix), is entirely equivalent to the NLS limit. Bryant (1984) 
numerically computed oblique wave groups with envelopes of permanent form on 
deep water by substituting truncated modal expansions in the full water-wave 
equations directly, without invoking the narrow-band assumption (p Q 1) .  He 
presented two families of periodic wave envelopes, but not solitary envelopes, near 
the caustic which forms as the group-to-wave angle approaches the critical angle 
corresponding to waves on the cusp lines of the Kelvin ship-wave pattern; as 
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expected, the periodic- and solitary-wave solutions of the NLS become singular near 
this critical angle (Hui & Hamilton 1979). 

In the present paper, a search for wave envelopes of permanent form is made near 
a caustic, on the basis of the MNLS. It is shown that possible solitary wave envelopes 
satisfy a certain nonlinear eigenvalue problem; as a result, unlike the ‘sech’ solitary 
waves of the NLS, both the envelope profile and the wave speed are determined when 
the envelope peak amplitude is specified. Using a shooting procedure, a new class of 
double-hump, symmetric solitary waves is computed, but no single-hump solitary 
envelopes are found. There is numerical evidence that, as the NLS limit is 
approached, these double-hump solitary waves of the MNLS tend to a pair of 
identical solitary waves of the NLS, located far apart so that their interaction 
becomes negligible. Furthermore, periodic-envelope solutions of the MNLS are 
calculated. It is found that, in addition to the two types of envelopes presented by 
Bryant (1984) near the critical group-to-wave angle, other periodic envelopes with 
more complicated structure are also pc Isible. Finally, in an Appendix, perturbation 
expansions of possible single-hump solitary waves of the MNLS close to the NLS 
limit are discussed, and it is shown that these expansions are equivalent to those of 
Jang & Benney (1981); it is pointed out that straightforward perturbation theory 
does not reveal the fact that solitary waves of the MNLS are solutions of an 
eigenvalue problem. 

2. Solitary wave envelopes 
We look for permanent-wave solutions of (3) : 

where 

A = a(E) exp [i(KE-QT)], 

[ = X - V T ,  
(4) 

and K ,  SZ, V are constant parameters. Then, upon substitution of (4) into (3), it  is 
found that a(6) satisfies - 

( 5 )  pa, - Da + a2a* + iVa, - iyattE = 0, 

where P = 8 + 3 y K ,  D=B+KV+/3K2+yK3,  V =  V + 2 p K f 3 y K 2 .  (6) 

It is convenient to normalize variables according to 

so that, after dropping the primes, (5) becomes 

Aa, - sa + a2a* + ivat - ia, = 0, (7 b )  

where 

and, without loss of generality, y has been taken to be positive. 

we require 
Now, attention is focused on calculating solitary-wave solutions. For this purpose, 

. (E)+O (E+ko) ,  
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where a = rexp (ie), so that the wave envelope remains localized. Furthermore, we 
impose the normalization 

K+-0  ([+a), K + K O  (E+-a), ( 8 b )  

where ~ ( 6 )  = 8, and K~ is a constant. Note that there is no loss of generality in 
assuming that K + O  as [+ co because, as is clear from (6), any other constant value 
can be absorbed in the carrier wavenumber of the packet. 

In view of condition (8a), equation ( 7 b )  can be linearized, to leading order, at the 
tails of the packet (E+ f co). Accordingly, we write 

a =f+ig 

and we look for asymptotic solutions of ( 7 b )  as [+ co in the form 

f -  Re{fe-"&}, g - Re{Be-"t} (E+co) ;  (9) 

substituting (9) into ( 7 b ) ,  neglecting the nonlinear term, it is found that 

(Ao-"s)2+CT2(v-CT2)2 = 0, (10a)  

and 

As (10a) is a cubic in cr2,  there are two possibilities : there are either three real or one 
real and a pair of complex conjugate roots. First, suppose that g2 is real. Clearly r2 
is not allowed to be negative because then (8a)  is violated; furthermore C T ~  > 0 can 
be a root of (10a) only under the conditions sA > 0 , v  > 0 in which case 

On the other hand, for a pair of complex conjugate roots of ( lOa),  CT = p+iq with 
p > 0 so that ( 8 a )  is satisfied, (9) and ( l o b )  give 

f- Ce-Pccos(q[++), g - +Ce-ptsin(qE++) (E+co),  (12) 

where C ,  + are constants. Therefore, 

K =  qtf-gfk N f q  ([+ co), 
f 2 + g 2  

and the first condition in ( 8 b )  is violated unless q = 0 in which case CT is real. So, 
finally, we conclude that the only acceptable value of CT is the one given by (11 a)  and 
this also fixes the speed parameter w according to (11 b) .  Furthermore, a similar 
asymptotic analysis at  the other tail of the packet (E+-co), making use of ( l i b ) ,  
implies that 

so that the most general asymptotic behaviour at  the tails is given by 

KO = 0, 

f-C:exp(T(s/A)ft), g -  c:exp(T(s/A$t) ( ~ + + c o ) ,  (13) 

where C:, C$ are constants and sA > 0. 
On the basis of (13), a shooting procedure can be readily devised to search for 

symmetric solitary wave envelopes withfeven and g odd functions of E :  starting at  
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FIQURE 1.  Plot of ga(0) as a function of the parameter A ;  zeros of gsE(0) correspond to 

solitary-wave solutions of the MNLS. 

a sufficiently large value of f ,  f ,  say, with the asymptotic expressions (13), integrate 
(7b)  towards f = 0 where the continuity conditions 

are to be imposed. These conditions provide three equations for the three unknown 
parameters C:, Ci, and A ; any possible real solution to these equations corresponds 
to a solitary wave envelope whose speed parameter v is specified by ( l l b ) .  Thus, it 
is concluded that solitary waves of the assumed form can exist only for special values 
of A ;  these are eigenvalues of the nonlinear eigenvalue problem consisting of (7b)  
subject to the boundary conditions (13). 

To implement this shooting procedure numerically, it proves convenient to keep 
A as a free parameter and, through Newton iteration, adjust C:, C i  such that the first 
two of conditions (14) are satisfied; in general, for a given value of A, qtt(0) =i= 0, and 
only eigenvalues A for which ga(0) happens to vanish correspond to solitary wave 
envelopes. A convenient starting point for the Newton iteration is the NLS limit, 
A % 1, which is discussed in detail in the Appendix ; for A % 1, as a first guess, g ( f )  can 
be taken to be zero and f ( f )  to be the NLS solitary wave. After convergence is 
reached and gte(O) is found at  a certain value of A, a standard continuation procedure, 
using pseudo-arclength as a continuation parameter (Keller 1977) where necessary, 
is followed to trace solution branches at  other values of A. 

Figure 1 shows the behaviour of gee(0) as a function of A. As A is decreased, departing 
from the NLS limit, qcc(0) originally increases monotonically so that no solitary 
envelopes are possible; however, at A around 2.1, a rapid fold takes place beyond 
which gct(0) oscillates between positive and negative values, first becoming zero a t  
A = 2.465. The amplitude la1 and wavenumber K of the corresponding solitary wave 
envelope are shown in figure 2 (a)  ; this is a double-hump solitary wave with variable 
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E 

5 
FIGURE 2 (a, b) .  For caption see facing page. 

wavenumber which reaches a minimum a t  g = 0. The next two zeros of gss(0)  occur 
a t  h = 2.9325, h = 3.194 and the corresponding envelopes are plotted in figures 2 ( b ) ,  
2 ( c )  respectively ; again, we obtain double-hump envelopes, qualitatively similar to the 
previous one. It is worth noting that as h increases, the amplitude of the trough at 
E = Q decreases rapidly and t h e  separation distance between the two amplitude 
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FIQURE 2. Double-hump solitary-wave solutions of the MNLS (only half of the profile is displayed 
owing to symmetry), -, envelope amplitude, la1 ; ----, envelope wavenumber, K .  (a) A = 2.465, 
( b )  A = 2.9325, (c) A = 3.194. 

maxima increases. These trends are consistent with numerical evidence that gcc(0) 
has more zeros (perhaps an infinite number of zeros) for larger values of h ; moreover, 
the distance between successive zeros decreases, suggesting that, as h increases, the 
double-hump solitary envelope of the MNLS tends to a pair of well-separated solitary 
waves of the NLS. This claim is also supported by the observation that, in the same 
limit, the two maxima of the computed envelopes seem to approach 4 2 ,  the peak 
amplitude of the NLS solitary wave in the normalized variables chosen here. 

The results reported above were obtained by implementing the shooting technique 
using a fourth-order RungeKutta  method with step size A( = 0.02 to integrate (7b) 
numerically, starting a t  6, = 30 with the asymptotic solutions (13); further 
improvement of the resolution did not have any appreciable effect on the numerical 
results. Also, as an independent check, the calculated envelope profiles were used as 
initial conditions for the MNLS (3), which was solved numerically through a semi- 
implicit scheme (Kung 1989) ; it was verified that these profiles are indeed waves of 
permanent form propagating with constant speed in accordance with (1 1 b). 

3. Periodic wave envelopes 
There are two families of periodic-wave solutions of the NLS; these can be 

expressed in terms of elliptic functions and are well known (Whitham 1974, $17.7, 
17 .8;  Hui & Hamilton 1979). Envelopes belonging to the first family have two wave 
groups per period, separated by zeros at which nodes form and the phase jumps by x 
(implying infinite-wavenumber peaks a t  those points) ; envelopes in the second 
family have only one group per period and no zeros, the wave amplitude oscillating 
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periodically between two positive values. For /3 > 0, both families are possible and 
include the NLS solitary wave as a limiting case; for /3 < 0, only the first family is 
possible. As a caustic is approached, 1/31 -+ 0, these solutions of the NLS become 
singular. As noted earlier, Bryant (1984), following a fully numerical approach, was 
able to compute periodic oblique wave groups in deep water close to the critical 
group-to-wave angle, where a caustic forms. He presented two families of envelopes, 
both qualitatively similar to the corresponding solutions of the NLS described 
above ; the only notable difference was that the phase varied continuously in both 
families, and no envelope zeros were found. Here, the possibility of wavepackets with 
periodic envelopes close to a caustic is examined on the basis of the MNLS. 

We look for symmetric periodic solutions of (7b) ,  a = f+ig, with period 2L; as 
before, f is taken to be an even and g an odd function of 5 so that the following 
boundary conditions apply : 

(154  

(15 b) 

v = 0, f(0) = a,; (16) 

f[ = 9 = gtt = 0 (6 = 01, 

f6 = g = g& = 0 (g = L).  

In addition, we impose the normalization 

here a, is taken to be known, and the wave profile, as well as the wave period, are 
to be determined for given values of h and a,. 

Two different numerical procedures were used. First, the shooting technique 
described in $2 can be readily modified to compute periodic waves : starting at  E = 0 
with conditions (15a), (16) and certain guessed values for g, (O) ,  fkt(0), equation (7b)  
is integrated numerically towards 5 = L,  using a fourth-order Runge-Kutta method; 
through Newton iteration, the appropriate values of gt(0), f , ( O ) ,  and L are 
determined such that (156) are also met and, thus, the wave profile is found for 
certain h and a,. Then, solutions at neighbouring values of the parameters A,  a, are 
obtained by continuation. The second numerical method is based on a pseudo- 
spectral approximation : the computational period [0, L] is discretized by N +  1 
equally spaced points, and f, g are interpolated by trigonometric polynomials with 
the proper periodicity and parity so that conditions (15) are automatically met. 
Applying the differential equation (7b) at the grid points, leads to 2N independent 
nonlinear equations for 2N unknowns consisting of N grid values off,  N -  1 grid 
values of g, and L. As before, these equations are solved by Newton iteration 
combined with continuation. In both computational procedures, a first guess for the 
Newton iteration is provided by the known periodic solutions of the NLS in the limit 
Ihl 9 1. Here, in particular, we choose to start the computation a t  large positive 
values of h ( A  9 1) with the two families of periodic solutions of the NLS having 
s = 1,  g = 0, and period equal to 27d. In this normalization, the maximum envelope 
amplitudes, according to the NLS, are a, = 1.708462, a, = 1.39048 for the first and 
second family, respectively ; these values of a, are kept fixed as A is varied and the 
corresponding solution branches are traced numerically. 

Figures 3(a) and 3(b) show typical periodic solutions belonging to the first and 
second envelope families for A = 2.8 and h = 3.65, respectively; the corresponding 
envelope half-periods are L = 4.828, L = 5.360. Note that both envelope profiles are 
qualitatively similar to those computed by Bryant (1984) : the envelope belonging to 
the first family is symmetric about E = &, the two adjacent groups in a period being 
out of phase, since f is odd and g is even about 6 = 5, and no nodes are found; 
envelopes of the second family have only one group per period, as the corresponding 
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FIGURE 3. Amplitude, la[, of periodic solutions of the MNLS (only half of the profile is displayed 
owing to symmetry). (a) Envelope in the first family with L = 4.828 for A = 2.8. (b) Envelope in the 
second family with L = 5.360 for A '= 3.65. 

solutions of the NLS. However, there is numerical evidence that both envelope 
families also include other periodic solutions having more wave groups in one period 
than those predicted by the NLS and computed by Bryant (1984). Here, we make no 
attempt to discuss all possible solution branches in any detail ; we only present two 
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FIQURE 4. Amplitude, lal, of periodic solutions of the MNLS (only half of the profile is displayed 
owing to symmetry). (a) Envelope in the first family with L = 3.944 for A = 2.54. (b) Envelope in 
the second family with L = 4.99 for A = 3.83. 

examples, one of each family. In  fact, the Newton iteration first converged to these 
solutions when the incremental change of the continuation parameter was not 
sufficiently small and, as a result, the continuation procedure, accidentally, jumped 
into a different solution branch. Figure 4 (a)  shows an envelope of the first family for 
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h = 2.54 with L = 3.944; as expected, the envelope profile is still symmetric, about 
E = @ but now there are four wave groups in one period. Similarly, figure 4 (b )  displays 
an envelope profile of the second family, for h = 3.83 with L = 4.99, having two wave 
groups in one period. All numerical solutions were computed using both the shooting 
method with step size A t  = 0.01 and the pseudo-spectral method with N = 64. The 
two methods gave results in excellent agreement. 

The above numerical results suggest that the MNLS has a rich variety of periodic 
solutions and warrant a detailed study of the corresponding bifurcation diagram. 

4. Discussion 
The analytical and numerical results presented above provide strong evidence that 

the MNLS admits double-hump solitary-wave solutions, suggesting that nonlinear 
effects may indeed play an important part near a caustic ; under certain conditions, 
these solitary wavepackets are expected to form the dominant far-field disturbance. 
As is well known, this is the case for the familiar solitary waves with a ‘sech’ profile 
of the NLS. Also, in a different physical context, multi-hump solitary wavepackets 
of the NLS (in the presence of weak dissipation) have been found to be important in 
the evolution of modulated cross-waves in a semi-infinite tank (Lichter & Chen 1987 ; 
Miles & Becker 1988). 

An NLS solitary wave with a ‘ sech ’ profile depends on two free parameters (apart 
from translations in space and time), which may be taken to be the peak amplitude 
and the speed. On the other hand, as shown in $2, solitary waves of the MNLS are 
eigensolutions. The scalings (7a, c) together with (6) and (11 b )  then imply that, for a 
certain eigenvalue A ,  fixing the peak envelope amplitude (which in turn fixes D) 
determines the corresponding solitary envelope completely, including the speed and 
the wavenumber distribution ; that is, MNLS solitary waves form a one-parameter 
solution family, which suggests that they may not be as easy to obtain from general 
initial conditions. However, this remains an open question. 

Finally, we point out that we were unable to find single-hump solitary waves of the 
MNLS (see also the discussion in the Appendix). This seems to be consistent with the 
work of Bryant (1984) who does not report solitary wave groups close to the critical 
group-to-wave angle. 

The authors would like to thank Professor D. J. Benney for helpful discussions on 
this topic. This work was supported by the Office of Naval Research under project 
NR062-742 and by the National Science Foundation Grant MSM-8451154. 

Appendix. Perturbation theory near the NLS limit 
As already remarked in $ 1, the higher-order dispersive term yAxxx of the MNLS 

becomes negligible away from a caustic (/PI % 1) and (3) reduces to the familiar NLS 
in this limit. It is well known that for /3 > 0, the NLS admits single-hump solitary- 
wave solutions with a ‘sech’ profile, and it is of interest to ask whether this is also 
the case for the MNLS close to the NLS limit. It seems natural to attempt to resolve 
this question through a perturbation expansion. 

Returning to (7b) ,  in order to examine the limit h %- 1 it is convenient to rescale 

[= A - k ,  v“ = Av = O ( l ) ,  (A 1) 
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ag- a + a2a* + ia(fial- alg) = 0, 

3 p p y  
8: . 

f = fo+af1+a2fi+ ... ) g = ag1+a2g*+ ... 

a = h-3 = - where 

On the assumption that a is small (a < l) ,  the perturbation expansions 

are proposed, where a = f + ig as before, and 

f,, = 1 / 2  sech i 
is the known NLS solitary-wave solution. Substituting (A 4) into (A 2), it is found 
that, to O(a),  fl = 0 and g1 satisfies the inhomogeneous problem 

with the notation S = sechl, R = tanhi .  The right-hand side of (A 5) is an odd 
function of d and it is clearly orthogonal to S ,  which is the well-behaved solution of 
the corresponding homogeneous problem ; therefore (A 5) has a solution which goes 
to zero as C++m and the packet remains localized, in accordance with (8a).  
However, in order to avoid secular terms which would give rise to non-uniformities 
in the expansions (A 5) a t  the tails of thepacket, it is necessary, in addition, to insist 
that the right-hand side of (A 5) is o(e-161) as 14 -+ m. This implies 

v " =  1, (A 6) 

which, in view of (A l),  is entirely equivalent to (11  b ) .  Then, one has 

Proceeding to O(a2),  g2 = 0 and, making use of (A 6), fi satisfies 

( $ + B P - l  f2 = -(5S3-7S5). 9 

) d2 

This inhomogeneous problem has an acceptable solution because the right-hand side 
of (A 7) is clearly orthogonal to RS, the well-behaved homogeneous solution, and, 
moreover, it  goes to zero faster than e-14 as la+m so that no secular terms are 

It is clear that the above perturbation procedure can be continued indefinitely 
without encountering any difficulties : at each successive order, there is an acceptable 
solution to the corresponding inhomogeneous problem because the parity of the 
right-hand side is always opposite to the parity of the well-behaved homogeneous 
solution; also, owing to (A 6), no non-uniformities arise at  infinity. This indicates 
that, for all h close to the NLS limit ( A  9 l),  the MNLS admits symmetric single- 
hump solitary-wave solutions, a conclusion that is clearly suspect : according to our 
earlier argument based on the asymptotic behaviour (13), solitary envelopes are 
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possible only for certain eigenvalues A, not for all h $ 1 as suggested by the 
perturbation theory. In  fact, the numerical results presented in $2 seem to suggest 
that, for single-hump envelopes, gs(0) tends to zero from above as A+ 00, never 
crossing the h-axis for finite h (see figure 1) ; so it is likely that the MNLS admits no 
single-hump solitary-wave solutions at all close to the NLS limit. Of course, we 
emphasize that this is only a suggestion because the numerics are not reliable for 
arbitrarily large h where ga(0 )  is very small; but, in any event, the perturbation 
theory is misleading as it gives no evidence of the fact that solitary envelopes are 
possible only for special values of A. 

The difficulty of the perturbation theory noted above leads us to conclude that the 
expansions (A 4) are not convergent in general. Nevertheless, assuming that they are 
asymptotic, one can possibly interpet these expansions as asymptotic approxi- 
mations of slightly unsteady wave solutions; this seems plausible in case the 
unsteady part of the envelope is exponentially small so that it cannot be expanded 
in powers of a. In  other problems where similar difficulties arise, it is possible to 
explicitly calculate the unsteady part, which lies beyond all orders in the asymptotic 
expansions (Segur & Kruskall987). It is desirable to have an improved perturbation 
theory close to the NLS limit, in order to confirm that solitary-wave solutions of the 
MNLS exist only for special values of h ; however, this appears to be a difficult task 
because it would be necessary to take into account exponentially small terms. 

Finally, it  is worth clarifying the connection between the perturbation expansions 
of single-hump solitary waves, proposed by Jang & Benney (1981), and the present 
work. In  looking for solitary-wave solutions of (3), Jang & Benney (1981) set y = - 1, 
p = 0, and allow the envelope wavenumber ~ ( 6 )  to have a finite value equal to K, say, 
a t  the tails of the packet; this choice does not imply loss of generality because, as is 
clear from (6), it  amounts merely to a shift of the carrier wavenumber. Jang & 
Benney (1981) presented perturbation expansions for the normalized value of D = 2 
and in the limit V j - 3 ,  K+-1. Now, according to (6) (with p= 0 ,  y = - l ) ,  this 
limit corresponds to p + 3 ,  a+O, V + O ,  so that, in view of (A 3), a+O. Therefore, 
this is the NLS limit and the two perturbation expansions are entirely equivalent ; 
in fact, it  is easy to show that the leading-order term of the expansion of Jang & 
Benney (1981) gives the familiar NLS solitary wave with a ‘sech’ profile. 
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